Metric Ricci curvature for $PL$ manifolds

نویسنده

  • Emil Saucan
چکیده

We introduce a metric notion of Ricci curvature for PL manifolds and study its convergence properties. We also prove a fitting version of the Bonnet-Myers Theorem, for surfaces as well as for a large class of higher dimensional manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Ricci Flow and Nonnegativity of Sectional Curvature

In this paper, we extend the general maximum principle in [NT3] to the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we exhibit complete Riemannian manifolds with bounded nonnegative sectional curvature of dimension greater than three such that the Ricci flow does not preserve the nonnegativity of t...

متن کامل

Surgery on Ricci Positive Manifolds

We consider performing surgery on Riemannian manifolds with positive Ricci curvature. We nd conditions under which the resulting manifold also admits a positive Ricci curvature metric. These conditions involve dimension and the form taken by the metric in a neighbourhood of the surgery.

متن کامل

Ricci Flow and Nonnegativity of Curvature

In this paper, we prove a general maximum principle for the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we construct complete manifolds with bounded nonnegative sectional curvature of dimension greater than or equal to four such that the Ricci flow does not preserve the nonnegativity of the sectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1203.1592  شماره 

صفحات  -

تاریخ انتشار 2012